7 - Multiplikation rationaler Zahlen

Aufgaben

1. Berechne (auch mit Hilfe des ETR)

a)
$$2 \cdot (-2)$$
 b) $(-2) \cdot (-2)$ c) $20 \cdot (-30)$ d) $(-2) \cdot (-20) \cdot (-3)$ e) $-\frac{1}{3} \cdot \frac{2}{3}$ f) $-\frac{2}{3} \cdot -\frac{5}{2}$ g) $\frac{2}{6} \cdot -\frac{3}{4}$ h) $\frac{32}{30} \cdot \frac{25}{24}$

i)
$$0.5 \cdot (+4)$$
 j) $-0.3 \cdot (-6)$ k) $(-1.5) \cdot (-2)$ l) $1.2 \cdot -\frac{5}{4}$

2. Berechne mit dem ETR. Welches Wachstum, welches Abklingen wird hier beschrieben?

a)
$$2,50 \in \cdot 1,19$$
 b) $12,50 \in \cdot 0,20$ c) $2,00 \in \cdot 1,05^{10}$ d) $-12,00 \in \cdot 1,2$ e) $-10.000,00 \in \cdot 1,04^{30}$ f) $2,00 \in \cdot 1,10 \cdot 1,20$

g)
$$50,00 \in \cdot 1, 5 \cdot 0, 5$$
 h) $12,00 \in \cdot 1,20^{-2}$ i) 2 Mio. Stück $\cdot 0,90^{-10}$

3. Vereinfache und schreibe im Ergebnis immer nur eine Zahl vor das x, z. B. $\frac{1}{2}x$ statt $\frac{x}{2}$.

a)
$$\frac{x}{3} \cdot \frac{3}{4}$$
 b) $\frac{x}{6} \cdot \frac{30}{4}$ c) $\frac{100}{3} \cdot \frac{3y}{10}$ d) $\frac{x^2}{7} \cdot \frac{6}{12}$ e) $\frac{x}{3} \cdot 3$ f) $x \cdot \frac{30}{4}$ g) $\frac{100}{3} \cdot 3y$ h) $x^2 \cdot \frac{6}{12}$ i) $-\frac{x}{3} \cdot \frac{3}{4}$ j) $\frac{-x}{6} \cdot \frac{30}{-4}$ k) $-\frac{x}{-3} \cdot \frac{3}{-4}$ l) $\frac{-x}{6} \cdot \frac{(-30)}{4}$ m) $(-x) \cdot \frac{-3}{4}$ n) $-\frac{12x}{6} \cdot -30$ o) $\frac{-x}{3} \cdot \frac{9}{4} \cdot \frac{-2}{3}$ p) $\frac{x}{-6} \cdot \left(-\frac{30}{4}\right) \cdot -4$

4. Vereinfache unter Beachtung von **Punkt vor Strich** und schreibe die Produkte immer mit einer Zahl vor der Variablenpotenz, z. B. $\frac{1}{2}x^2$ statt $\frac{x^2}{2}$.

a)
$$2x + \frac{x}{3}$$
 b) $2 \cdot \frac{x}{6} + x - 2$ c) $-\frac{100}{3} \cdot x + x$ d) $-\frac{x^2}{7} \cdot (-7)$ e) $1 - \frac{x}{3} \cdot x + 20$ f) $2 + \frac{-x}{6} \cdot 30 - 2$ g) $-\frac{x}{-3} \cdot 300 + 2x \cdot (-2)$ h) $(-1) \frac{-x}{-6} + 1 \cdot x$ i) $-\frac{x \cdot (-x)}{3} + \frac{x^2}{3}$ j) $-x \cdot -\frac{30}{60} - x + \frac{x}{2}$ k) $\frac{-x}{3} \cdot 2 - \frac{-x}{3} \cdot 6 - \frac{x}{3} \cdot 9$ l) $\frac{x}{2} - \frac{3}{4} + \frac{x}{4} + 0, 5$

Erklärung

Für Aufgabe 1 wiederhole das Bruchrechnen und die Vorzeichenregel für die Multiplikation (WOB: 7 - Multiplikation ganzer Zahlen I bis III). Beides zusammen ergibt: **Sind eine ungerade Anzahl von Minuszeichen in den angegebenen Termen, so ist das Ergebnis negativ, sonst positiv**. Für Aufgabe 2 wiederhole das Prozentrechnen (Wachsen und Schwinden).

Für Aufgabe 3 und 4 denke Dir z.B. statt $\frac{x}{7}$ immer $x \cdot \frac{1}{7}$ und rechne dann wie in Aufgabe 1. Beachte auch die KLAPOPS-Regel, also: KLAmmern vor POtenzen vor Punkt vor Strich.

Lösungen

1. Berechne (auch mit Hilfe des ETR)

a)
$$-4$$

c)
$$-600$$
 d) -120 e) $-\frac{2}{9}$

d)
$$-120$$

e)
$$-\frac{2}{9}$$

f)
$$\frac{5}{3}$$

g)
$$-\frac{1}{4}$$
 h) $1\frac{1}{9}$

h)
$$1\frac{1}{9}$$

$$1) -1.$$

$$m) -7$$

l)
$$-1,5$$
 m) -7 n) $-\frac{1}{6}$ o) $\frac{1}{12}$

o)
$$\frac{1}{12}$$

p)
$$\frac{1}{2}$$

t)
$$-0.96$$

2. Berechne mit dem ETR. Welches Wachstum, welches Abklingen, wird hier beschrieben?

- a) $2,50 \in$ wachsen um $19\% = 2,98 \in$.
- b) $12,50 \in$ schwinden um $80\% = 2,50 \in$.
- c) $2,00 \in$ wachsen 10 mal um $5\% = 3,26 \in$
- d) 12,00€ Schulden wachsen um 20% = 14,40€ Schulden.
- e) 10.000,00€ Schulden wachsen 30 mal um 4% = 32.433,98€ Schulden.
- f) $2,00 \in$ wachsen um 10%, danach um $20\% = 2,64 \in$.
- g) $50,00 \in$ wachsen um 50%, danach schwinden sie um $50\% = 37,50 \in$.
- h) 12,00€ sind immer wieder um 20% gewachsen (davor und danach!). 8,33€ hatte man 2 Wachstumsperioden bevor man 12,00€ hatte.
- i) Irgendetwas hat immer wieder um 10% abgenommen. 5,7 Mio. Stück hatte man 10 Wachstumsperioden, bevor man 2 Mio. Stück hatte.

3. Vereinfache und schreibe im Ergebnis immer nur eine Zahl vor das x, z. B. $\frac{1}{2}x$ statt $\frac{x}{2}$.

a)
$$\frac{1}{4}x$$

b)
$$\frac{5}{4}x$$

a)
$$\frac{1}{4}x$$
 b) $\frac{5}{4}x$ c) $10y$ d) $\frac{3}{28}x^2$ e) x f) $7,5x$

f)
$$7,5x$$

h)
$$\frac{1}{2}x^2$$

i)
$$-\frac{1}{4}x$$

g)
$$100y$$
 h) $\frac{1}{2}x^2$ i) $-\frac{1}{4}x$ j) $1,25x$ k) $-\frac{1}{4}x$ l) $1,25x$

k)
$$-\frac{1}{4}x$$

$$m) \frac{3}{4}x$$

$$n) 60x$$

o)
$$\frac{1}{2}x$$

n)
$$60x$$
 o) $\frac{1}{2}x$ p) $-5x$

4. Vereinfache unter Beachtung von Punkt vor Strich und schreibe die Produkte immer mit einer Zahl vor der Variablenpotenz, z. B. $\frac{1}{2}x^2$ statt $\frac{x^2}{2}$.

a)
$$2x + \frac{1}{3}x = 2\frac{1}{3}x$$

b)
$$\frac{1}{3}x + x - 2 = 1\frac{1}{3}x - 2$$
 c) $-33\frac{1}{3}x + x = -32\frac{1}{3}x$

c)
$$-33\frac{1}{5}x + x = -32\frac{1}{5}x$$

d)
$$x^2$$

e)
$$21 - \frac{1}{3}x^{2}$$

$$f) -5x$$

g)
$$100x - 4x = 96x$$

h)
$$-\frac{1}{6}x + x = \frac{5}{6}x$$

i)
$$\frac{1}{3}x^2 + \frac{1}{3}x^2 = \frac{2}{3}x^2$$

j)
$$\frac{1}{2}x - x + \frac{1}{2}x = 0$$

k)
$$-\frac{2}{3}x + 2x - 3x = -1\frac{2}{3}x$$

d)
$$x^2$$
 e) $21 - \frac{1}{3}x^2$ f) $-5x$
g) $100x - 4x = 96x$ h) $-\frac{1}{6}x + x = \frac{5}{6}x$ i) $\frac{1}{3}x^2 + \frac{1}{3}x^2 = \frac{2}{3}x^2$
j) $\frac{1}{2}x - x + \frac{1}{2}x = 0$ k) $-\frac{2}{3}x + 2x - 3x = -1\frac{2}{3}x$ l) $\frac{1}{2}x + \frac{1}{4}x - 0, 25 = \frac{2}{3}x - 0, 25$